Metric Viscosity Solutions of Hamilton-jacobi Equations

نویسنده

  • WILFRID GANGBO
چکیده

A theory of viscosity solutions in metric spaces based on local slopes was initiated in [39]. In this manuscript we deepen the study of [39] and present a more complete account of the theory of metric viscosity solutions of Hamilton–Jacobi equations. Several comparison and existence results are proved and the main techniques for such metric viscosity solutions are illustrated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Solutions of Hamilton-Jacobi Equations with State Constraints

We study Hamilton-Jacobi equations in a bounded domain with the state constraint boundary condition. We establish a general convergence result for viscosity solutions of the Cauchy problem for Hamilton-Jacobi equations with the state constraint boundary condition to asymptotic solutions as time goes to infinity.

متن کامل

Metric Formulae for Nonconvex Hamilton–jacobi Equations and Applications

We consider the Hamilton-Jacobi equation H(x,Du) = 0 in Rn, with H non enjoying any convexity properties in the second variable. Our aim is to establish existence and nonexistence theorems for viscosity solutions of associated Dirichlet problems, find representation formulae and prove comparison principles. Our analysis is based on the introduction of a metric intrinsically related to the 0–sub...

متن کامل

On Viscosity Solutions of Hamilton-jacobi Equations

We consider the Dirichlet problem for Hamilton-Jacobi equations and prove existence, uniqueness and continuous dependence on boundary data of Lipschitz continuous maximal viscosity solutions.

متن کامل

Viscosity Solutions of Hamilton-jacobi Equations, and Asymptotics for Hamiltonian Systems

In this paper we apply the theory of viscosity solutions of Hamilton-Jacobi equations to understand the structure of certain Hamiltonian flows. In particular, we describe the asymptotic behavior of minimizing orbits of Hamiltonian flows by proving a weak KAM theorem which holds under very general conditions. Then, using Mather measures, we prove results on the uniform continuity, difference quo...

متن کامل

A Paraxial Formulation for the Viscosity Solution of Quasi-P Eikonal Equations

Stationary quasi-P eikonal equations, stationary Hamilton-Jacobi equations, arise from the asymptotic approximation of anisotropic wave propagation. A paraxial formulation of the quasi-P eikonal equation results in a paraxial quasi-P eikonal equation, an evolution Hamilton-Jacobi equation in a preferred direction, which provides a fast and efficient way for computing viscosity solutions of quas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014